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Abstract 

A. Connes and J. Lott's applications of non-commutative geometry to interaction physics are 
described for the purpose of model building. 
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The possibilities of  the Yang-Mills-Higgs model building kit have been explored 

thoroughly in the last 30 years and the standard SU(3) × SU(2) × U(1)  model of  

strong and electroweak interactions has emerged quite uniquely as adequate description 

of  high energy phenomena. On the mathematical side this kit relies on two ingredients: 

the differential forms on spacetime together with their structure of  differential algebra 

and a Lie group represented on a finite dimensional internal space. These two ingredients 

are thrown together in a tensor product to yield a gauge invariant action. In the Connes-  

Lott approach [ 1 ] both spacetime and internal space are described by involution algebras 

and their tensor product produces a special class of  Yang-Mills actions with spontaneous 

symmetry breaking. In this class the fermionic mass matrix is naturally unified with the 

Dirac operator, the Higgs scalars with the gauge bosons and the Higgs potential with 

the Yang-Mills Lagrangian. While the introduction of  Lie groups is ad hoc, involution 

algebras have a profound mathematical motivation in this context, non-commutative 

geometry. A model builder, however, who is willing to accept Connes and Lott 's rules 

can very well do with a minimum of mathematics to be introduced below. 

Let us quickly review input and output of  the Yang-Mills-Higgs kit. To get started 

we have to commit ourselves to the following choices: 
- a (finite dimensional) real, compact Lie group G, 
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- a positive definite, bilinear invariant form on the Lie algebra 9 of G. This choice is 
parametrized by a few positive numbers gi, the coupling constants, 

- a (unitary) representation 7-/L for left handed fermions (spin ½), 

- a representation 7-/R for right handed fermions, 

- a representation 7-(s for scalars (spin 0), 
- an invariant positive polynomial of order 4 on the representation space of the scalars; 

this polynomial is denoted by V(~b), ~b E 7-/s, the Higgs potential, 
- one complex number or Yukawa coupling gr for every singlet in the decomposition 

of the representation 

® ® • ® ® (1) 

With these ingredients the popular Yang-Mills-Higgs algorithm produces the following 

output: 
- the particle spectrum, roughly one particle for each basis vector in 

~t c ® 7-tL ® ~R ® ~ s ;  (2) 

the basis elements of the complexified Lie algebra gc are the gauge bosons, they have 

spin 1, 
- the particle masses, 

- the interactions, e.g. charges, Kobayashi-Maskawa matrix, etc. 
Trial and error, that is guessing an input, calculating the output and comparing with 

experiment, has singled out the standard model of electroweak and strong interactions: 

G = S U ( 3 )  x SU(2) x U ( I )  

with three coupling constants g3, g2, g l ,  

7 - / L = [ ( 1 , 2 , - 1 ) ® ( 3 , 2 , ½ ) ]  x 3, 

7-[. = [(1, 1 , - 2 )  @ (3, 1,4) @ (3, 1 , - 2 ) ]  

7-/s = ( 1 , 2 , - 1 )  , 

x 3 ,  

(3) 

(4) 

(5) 

(6) 

where (n3, n2, y) denotes a tensor product of an n3 dimensional representation under 
SU(3),  an n2 dimensional representation under SU(2) and the one dimensional repre- 
sentation of U(1) with hypercharge y: 

p(e  iO) =e i3yO, 3y C Z, 0 C [0 ,270 ,  (7) 

V(~b) = a(~*~b) 2 - ½/*2~b*~b, ~b C 7-[s a , #  > 0. (8) 

There are 27 Yukawa couplings in the input, enough to allow for an arbitrary fermionic 
mass matrix (fermion masses and Kobayashi-Maskawa matrix) and an arbitrary scalar 
mass in the output. 

In a first step we only consider a particular subset of Connes' model building kit, 
where spacetime and internal space come in a tensor product. This subset compares 
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naturally with the Yang-Mills-Higgs model building kit. As before the input concerns 

only the (finite dimensional) internal space: 
- an associative involution algebra ,,4 with unit I, 
- two representations 7-/C and 7"(n of A, 

- a mass matrix M i.e. a linear map M : ~R ---+ 7-/L, 

- a certain number of coupling constants depending on the degree of reducibility of 

~-~L ~ "~R- 
The data (7-/L, 7-(R, M) plays a fundamental role in non-commutative geometry where 

it generalizes the Dirac operator. It is called K-cycle. 
On the output side we find a complete action of Yang-Mills-Higgs type with G the 

group of unitary elements in A: 

G = { g C A ,  gg*=g*g=l} (9) 

or possibly a subgroup thereof. In other words in Connes' approach the representation 
space ~ s  of scalars sits at the output end together with the representation space [t c of 
the gauge bosons. Likewise the quartic Higgs potential together with the Klein-Gordon 

Lagrangian for the scalars are found in the output accompanying the quartic Lagrangian 

for the gauge bosons. 
In the following we first discuss Connes and Lott's rules for a finite dimensional (in- 

ternal) space. Thereby we avoid the difficulties of functional analysis, only prerequisites 
being linear algebra, e.g. matrix multiplication. The second section deals with a par- 

ticular infinite dimensional algebra, the functions on spacetime, and the Dirac operator. 

Model builders are well acquainted with this part of mathematics which also motivates 

Connes' rules. The third section is simply the tensor product of the first two. As we 
go along, the general rules are illustrated by an example. The simplest typical one we 

know strikingly resembles the Glashow-Salam-Weinberg model. 

1 .  T h e  i n t e r n a l  s p a c e  

An involution algebra .A is an associative algebra with unit 1 and an involution *, i.e. 
an antilinear map from A into itself, 

a, b C A ,  (10) 

A E R o r C ,  (11) 

(a+b)*=a* +b*, 

(Aa)* = A'a*, 

with the properties: 

a * * = a ,  1 " = 1 ,  (ab)* = b'a*. 

The two classical examples of involution algebra are: 
(i) 

(12) 

M , ( C ) ,  the algebra of n × n matrices with complex entries. The involution is 

transposition and complex conjugation. 
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(ii) The algebra of functions from a manifold (spacetime) into the complex numbers. 
The involution is just complex conjugation. 

The second example is infinite dimensional and commutative, while the first one is 
finite dimensional and non-commutative. Note that in this context the word non-abelian 
is non-fashionable. 

A representation p of .A over a Hilbert space 7-[ is a homomorphism from .,4 into the 
operators on 7-/: 

p : . A  ~ E n d ( ~ ) ,  a ,  , p ( a ) .  (13) 

Here homomorphism refers to all given structures, addition, scalar multiplication, mul- 
tiplication, unit and involution: 

p(a + b) =p(a) + p(b),  

p(Aa) = Ap(a),  

p(ab) =p(a)p(b) ,  

p ( 1 ) = l ,  

p(a*) = p(a)*.  

All representations will be supposed faithful, i.e. injective. 

(14) 

(15) 

(16) 

(17) 

(18) 

Model builders should note that the two choices, algebra and representation, are much 
more restricted than the choice of a group and a representation. Not every group G is the 
group of unitary elements in an algebra ,4. The phenomenologically important SU(3) 
is an example to which we shall have to come back. Every algebra representation yields 
a group representation of its group of unitaries, but most of these group representations 
cannot be obtained from an algebra representation. For example, the group SU(2) has 
unitary representations of any dimension, 1, 2, 3... while the algebra of quaternions, 
whose group of unitaries is SU(2), admits only one irreducible representation, the 
one of dimension 2. Indeed the tensor product of two algebra representations is not a 
representation because compatibility with the linear structure is lost. Also the popular 
singlet representation, "dark matter", is not available. 

A K-cycle (~ ,79 ,X)  of an algebra ,4 consists of a (faithful) representation p on a 
Hilbert space 7-/, of a self adjoint operator g on 7-/, called chirality, satisfying 

X 2 = 1 (19) 

and of a self adjoint operator 79 on 7-(, the generalized Dirac operator. Furthermore we 
suppose that p(a) is even: 

P(a)x  = xp(a)  (20) 

for all a E .A and that 79 is odd: 

79X = -X79. (21) 

In the infinite dimensional case there will be additional conditions to be satisfied by 79. 
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In other words the representation p is reducible and decomposes into a left handed 
and a right handed part pL and pR living on the left handed and right handed Hilbert 
spaces 

7-/L := ½ ( 1 -  X)7-(, 7-/R := ½(1 + X)7-L (22) 

For a finite dimensional Hilbert space we can pick a basis such that 

( , ,  0 ) 
X = 0 -1R " (23) 

Then 

(o ) (°o)  0 79 = M* ' (24) 
P = PR ' 

with M a matrix of size dim 7-/L × dim ~R, the mass matrix. 

Example. Let ..4 := M2(C) G C and denote its elements by (a, b), a being a 2 × 2 
matrix and b a complex number. We define a K-cycle by 

with 

7-/L := C 2, 7"/R := C, (25) 

p L ( a , b )  :=a, p R ( a , b )  := b, (26) 

M : = ( O  ) ,  m E C .  (27) 

Given an (involution) algebra and a K-cycle we now want to construct a differential 
algebra. Let us recall the axioms of a differential algebra/2. It is a graded vector space 

/2 = ~ O p. (28) 
pEN0 

We denote its associative product by juxtaposition: 

~2 r x 0 q , /2P+q,  (~b,~p) , ~ ~&p. (29) 

Furthermore/2 is equipped with a differential 8 that is a linear map 

6 : /2P  , /2 p+I, ~ b ~ 6 q ~  (30) 

with two properties. It is nilpotent, 

62 = 0  (31) 

and obeys a graded Leibniz rule, 

6(~;b~,) = (64~)g, + (-l)P~b6g ', q~ c /2P. (32) 
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The differential algebra is called (graded) commutative if in addition its product 
satisfies 

q~0 = ( - - 1 ) l ' q ~  b, q~ E J2 p, ~ E /2 q. (33) 

From our given algebra `4 we now construct first an auxiliary differential algebra 
-0,4, the so called universal differential envelop of A: 

-00`4 := A, (34) 

-01.,4 is generated by symbols 6a, a E `4 with relations 

61 = 0 ,  6(ab)  = ( 6 a ) b + a 6 b .  (35) 

Therefore -01`4 consists of finite sums of terms of the form ao6al, 

-0'A=/Z464, 
I, J 

and likewise for higher p 

J J }  ao,a I C ..4 (36) 

= aoSal.. .Sa p, a:q E ,.4 . (37) 

The differential 8 is defined by 

8(ao6al. . .Sap) := 6ao6al...6ap. (38) 

Two remarks: The universal differential envelope -0`4 of a commutative algebra ,,4 is 
not necessarily graded commutative. The universal differential envelope of any algebra 
has no cohomology. This means that every closed form O~ of degree p > 1,6q'~ = 0, is 
exact, q~ = 6~ for some ( p -  l)-form ~. 

The involution * can be extended from the algebra ,,4 to its universal differential 
envelope ,01 ..4 by putting 

(6a)* := 6(a*)  =: 6a* (39) 

and of course 

(~b~O)* = ~/,*~b*. (40) 

Note that Connes defines (6a)* := - 6 ( a * ) ,  which amounts to replacing 6 by i6. 
Our next step is to extend the representation p from the algebra .,4 to its universal 

differential envelope -0.,4. This extension is the central piece of Connes' algorithm and 
deserves a new name: 

~': -0,4 ~ End(7-/), ~ ,  , zr(q~), (41) 

zr(ao6al.. .6ap) := ( - i ) P p ( a o )  [79, p(aj  ) ]... [i9, p(ap)  ]. 
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Note that in Connes' notations there is no factor ( - i )  p on the r.h.s. A straightforward 

calculation shows that 7r is in fact a representation of/'2,,4 as involution algebra, and we 
are tempted to define also a differential, again denoted by 6, on 7r(/)A) by 

87"r(q~) := 7r(So~). (42) 

However, this definition does not make sense if there are forms q~ with 7"r(0~) = 0 

and 7r(6~) ~ 0. By dividing out these unpleasant forms we shall construct a new 
differential algebra/2.,4, the real thing. It will of course depend on the chosen K-cycle. 

The kernel of 7"r is a (bilateral) ideal in the differential algebra /),A. We turn it into 
a differential ideal J ( J  for junk): 

J := ker zr + 6 ker zr =: ~ JP (43) 
p 

with 

JP = (kerrr)l '  + 8 ( k e r T r )  p - I  (44) 

and divide it out: 

S2A := ,0,,4/,/.. (45) 

On the quotient now, the differential (42) is well defined. Degree by degree we have: 

s2°A = ~ ° A  ~ p ( A )  (46) 

because p is faithful and j0 = (kerTr)0 = 0, 

~ I A  = .01A/(kerTr) 1 ~ 7r (~ lA)  (47) 

b e c a u s e  j l  = (kerlr)1, and in degree p > 2 

~)t'A ~ 7r(,OP,A)/Tr(~(ker ~-) p- l  ). (48) 

While ~,A has no cohomology ,0,,4 does in general. In fact let us anticipate, if .T" is the 

algebra of complex functions on a compact spin manifold M of even dimensions and 
if the K-cycle is obtained from the Dirac operator then d2.T is de Rham's differential 

algebra of differential forms on M. 
We come back to our finite dimensional case. Remember that the elements of the 

auxiliary differential algebra d2,A that we introduced for book keeping purposes only 

are abstract entities defined in terms of symbols and relations. On the other hand, with 

the above isomorphisms, the elements of ,O.A, the "forms", are operators on the Hilbert 
space 7-/of the K-cycle, i.e. concrete matrices of complex numbers. 

Examples.  Before continuing our example above let us mention a class of trivial exam- 
ples that deserve the name vec tor  l ike models .  The algebra ..4 is arbitrary, left and right 
representations are equal pL = PR, and the mass matrix appearing in the "Dirac" operator 
7) is a multiple of the identity matrix M = A1, A E C. We shall see that these models 
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will produce Yang-Mills theories with unbroken parity and unbroken gauge symmetry 
as electromagnetism and chromodynamics. Any vector like model has trivial differential 
algebra, 

/2°.A = .A, J2P.A = 0, p = 1,2, 3 .... (49) 

Coming back to our serious example recall: 

p ( a , b ) =  , D =  M *  0 " (50) 

We need the commutator 

( 0 M p R ( b ) - p l . ( a ) M )  
[79 ,p(a ,b)]= M * p L ( a ) - p R ( b ) M *  0 

.( o 

M* a - bM* 0 

M*(a - B) 0 ' 

where we have put B := bl. A general element in s21.A is of the form 

( 0 
1r( (ao, bo)6(al ,b i )  ) = - i  M*Bo(ai - Bl) 

and as vector space 

Likewise a general element in 7r(i22.A) is 

7r( (ao, bo)6(al,  bl ) 6(a2, b2) ) 

{ao(al  - BI)MM*(a2 - B2) 
0 

Zlao(al - Bl) (a2 - B2) 
= + Aao(al -- Bi )o'3(a2 -- B2) 

0 

where we have used the decomposition 

MM* = ( [m[20 0 ) = A l + d ° 3  

with 

1 01 ) zl:--- ½lml 2, 0-3 := 0 - " 

-ao(  al 0 B1) M ) 

0 ) 
M*Bo(al - B1) (a2 - Bz )M 

0 ) 

M*Bo(al - BI)(a2 - B2)M 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 



T. Schiicker, J.M. Zylinski/Journal of Geometry and Physics 16 (1995) 207-236 215 

A general element in (ker~r) 1 is a finite sum of the form 

Z(4 ,  ¢;) (57) 
J 

with the two conditions 

ao(al-B ~) M=O, (58) 

(59) 

Therefore the corresponding general element in 7"r(S(kerTr) 1 ) is 

( A ~ j ( o ~ - - B ~ ) ( a ~ - B ~ ) + A ~ - ~ j ( a ~ - B ~ ) o ' 3 ( a ~ - B ~ )  ~3 
0 (60) 

still subject to the two conditions. We have the following inclusion 

7r(8(kercr)l) D { ( A~-']ja~°'3~0 00) , Z 4 a ~  =0 } j  

= { ( o k  ~ ) ,  k E M 2 ( C ) } .  (61) 

To prove the last equality we note that the subspace is a bilateral ideal in the rhs. 
Furthermore the subspace contains the non-zero element with: 

0) (, 1) 
a0:= _ , al := 1 1 ' (62) 

a0a, = 0, a0o3a, = ( ~  ~ ) .  (63) 

The algebra M2(C) being simple the subspace is the entire algebra. Consequently 

{ (Ak  ~) k E M2(C)}.  (64) 7r(6(ker 7r) l) = 0 ' 

Now we have to compute the quotient 

s22.4 = 7r(S22.4)/Tr(6(ker 7r) 1 ). (65) 

We are tempted to conclude 

0 ) ) 02"4= M*cM ' c G M2(C) . (66) 

The problem with this conclusion is that a quotient of vector spaces consists of classes 
and is not canonically a subspace. The situation is simpler if our vector space comes 
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equipped with a scalar product, in which case there is a privileged representative in each 
class, the one orthogonal to the subspace 7r(8(kerqr)l).  This canonical choice allows 
us to consider the quotient as subspace. 

Since the elements of ~r(~.A) are operators on the Hilbert space 7-/, i.e. concrete 
matrices, they have a natural scalar product defined by 

(q~,~) :=tr(q~*~), q~,~ ETr(~P.A) (67) 

for forms of equal degree and zero for the scalar product of two forms of different degree. 
With this scalar product 0 ,4  is a subspace of ~r(~).A) and by definition orthogonal to 
7r(J) = ~'(SkerTr). Now our conclusion in the example makes sense. As a subspace 
/2..4 inherits a scalar product which deserves a special name ( , ). It is given by 

(~b,~p) =tr(~b*P~), ~b,~/, E Ot'.A (68) 

where P is the orthogonal projector in ¢r(~.A) onto the ortho-complement of J and 
~b and ~p are any representatives in their classes. Again the scalar product vanishes for 
forms with different degree. For real algebras the scalar products are defined as the real 
part of the trace. 

Let us recapitulate our example: 

{(o 0) ) 0 ° ' 4 =  b ' a 6 M 2 ( C ) ,  b E C  , (69) 

O~A= i M0h. 0 

0 ) } 
0 2 " 4 =  M * c M  ' c E M2(C) . (71) 

Since 7r is a homomorphism of involution algebras the product in 0..4 is given by matrix 
multiplication followed by the projection 

0) 
1 ( 7 2 )  

and the involution is given by transposition complex conjugation. It is in order to 
calculate the differential 6 that we need the complicated construction above: 

8 : 0 ° . A  ,O1A 

(a o) ( o 
I , i ( 7 3 )  

0 - M * ( a  - B )  ' 

S : O I A  , 0 2 A  

( o  (o ° o ) 
i M ' h *  ' ' M * ( h  + [~*)M " (74) 

Let us note that not every example can be calculated as explicitly as the above one. Just 
add a non-diagonal entry in the mass matrix M of our example and 6 will not have the 
simple form indicated. 
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We are now ready to make a first contact with gauge theories. Consider the vector 
space of antihermitian 1-forms 

{H 6 S21A, H* = - H } .  (75) 

A general element H is of the form 

( O H M )  
H = i  M'h* 0 ' h E M 2 ( C ) .  (76) 

These elements are called Higgses or gauge potentials. In fact the space of gauge 
potentials carries an affine representation of the group of unitaries 

G = {g E .A, gg* =g*g = 1} = U(2) x U(1) (77) 

defined by 

H g := p ( g ) H p ( g  - l )  + p ( g ) S p ( g  - l )  

= p ( g ) H p ( g  -1) + ( - i ) p ( g ) [ 7 9 , p ( g - l ) ]  

0 
=:i  ( M , ( h g ) ,  (78) 

with 

h g= p L ( g ) [ h -  1]pR(g -1) + 1. (79) 

Hg is the "gauge transformed of H ' .  As usual every gauge potential H defines a covariant 
derivative 8 + H, covariant under the left action of G on /L4: 

g~b := P(g)O, 0 C 12.A (80) 

which means 

(¢S+H g) g ~ =  g [ ( t $ + H ) ~ ] .  (81) 

As usual we define the curvature C of H by 

C : = S H + H  2 E ~2,A. (82) 

Note that here and later H 2 is considered as element of/-22,A, which means it is the 
projection P applied to H 2 E 7r(,02,,4). The curvature C is a hermitian 2-form with 

homogeneous gauge transformations 

C g := 8 ( H  g) + ( H g )  z = p(g )Cp(g-1 ) .  (83) 

Finally we define the "Higgs potential" V(H) ,  a functional on the space of gauge 
potentials, by 

V(H) := (C,C)  = t r [ ( S H +  H 2 ) p ( S H +  Hz)] .  (84) 
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It is a polynomial of degree 4 in H with real, non-negative values. Furthermore it is 
gauge invariant, 

V ( H  g) = V ( H )  (85) 

because of the homogeneous transformation property of the curvature C and because 
the orthogonal projector P commutes with all gauge transformations 

p ( g ) P  = P p ( g ) .  (86) 

The transformation law for H motivates the following change of variables 

~ : = i  M*~* : - - H - i D .  (87) 

In other words 

q ~ = h - 1 .  (88)  

The new variable q~ transforms homogeneously 

cI, g = p ( g ) @ p ( g - l )  (89) 

o r  

dp g = pL(g)qbpR(g - l  ) (90) 

where the differential is of course considered gauge invariant 

D g = D. (91) 

In our example the Higgs h is a complex 2 × 2 matrix, which in terms of ~b decomposes 
under gauge transformations into two complex doublets, the two column vectors ~bl and 
~b2 of ~b. The second doublet ~b2 disappears due to the special form of the mass matrix. 
The curvature is readily calculated 

C := ~H + H 2 = M * c M  (92) 

with 

c = h  + h * - h * h =  l - ~ b * ~ .  (93) 

The Higgs potential is 

V ( H )  =t r  [C 2] ~- tr [(M*(1 - ~b*~b)M] 2 

= Im14( 1 - ~b~bl )2. (94)  

Its most interesting feature is that it breaks the gauge symmetry spontaneously. Indeed 
the only gauge invariant point in the space of gauge potentials or Higgses is ~b = 0. This 
point is not a minimum of the Higgs potential. 
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2. Space t ime  

In this section our algebra is infinite dimensional, the algebra of differentiable, com- 
plex valued functions on spacetime M 

.T := C ~ ( M ) .  (95) 

The K-cycle is defined by the Dirac operator. We sketch how the differential algebra 
.O.Y" reproduces the ordinary differential forms on M. For simplicity spacetime is taken 
flat, compact and Euclidean. To define the Dirac operator we also need a spin structure. 
We denote by S the Hilbert space of the K-cycle. S consists of square integrable spinors 

[e2(x) 
= | ~ 3 ( x )  " 

\ ~ 4 ( X )  

The representation of 5 r on S is simply by multiplication and is denoted by - ,  

(96) 

( f ~ ) ( x )  := f ( x ) ~ ( x ) ,  f E.U, ~ E S .  (97) 

The odd operator of the K-cycle is the (true) Dirac operator 

3 
t, 0 

¢ ~  := i E 3/ OxU qs. (98) 
/z--o 

Our gamma matrices are self adjoint, 

0 0 
1 0 

3/o := 0 -1  

0 0 (oo 
0 -1  

3/2 := --1 0 

0 0 

They satisfy 

1 0 := ( 
0 0 yl 
0 0 ' 
0 -1  0 , ( 
0 0 3/3 
0 0 ' := 
1 0 

the anticommutation relation 

o o 

0 0 i 

0 - i  0 ' 

- i  0 0 

0 0 i O ~  

J 
0 0 0 --i 

- i  0 0 0 " 

o 0 i 0 

(99) 

(1oo) 

y~'y" + yvy~' = 2rl uv ! (101) 

with the flat Euclidean metric 

o o o 

r /=  0 1 " 

0 0 

(102) 
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The chirality operator is by definition (00 
")/5 :----" y0,)/1,)/2~/3 ---- 0 0 0 1 

- 1  0 0 " (103)  

0 -1  0 

It is self adjoint, its square is one as postulated and since it anticommutes with all other 
gamma matrices 

YuY5 + YsY u = 0, (104) 

the Dirac operator is odd 

~ ' s  + ~'5~ = o. ( lO5)  

The Dirac operator ¢i has additional algebraic properties: 

- The commutator [ ~ , f ]  is a bounded operator for all f E ~-. 

- The spectrum of ¢ is discrete and the eigenvalues an of I¢1 arranged in an increasing 
sequence are of order n (l/d) for d dimensional manifolds M, d even, for us d = 4. 

These two properties are added to the axioms of an abstract K-cycle. They will be 
needed later to define a trace. 

We denote by d the differential in the universal differential envelope ~3 r and by ~o,  
D for Dirac, the algebra homomorphism 

7to : ~.T ----* E n d ( S ) ,  q~, , rro(O~), 

fro ( fod f ,  . . .dfp) := (- i)Pf_o[¢,  f ,  ] . . .[¢, f p]. 

We need the commutator 

(106) 

(107) 

[~, f ] q ,  0 - = i'Yu ~x~ ( fg* ) - i fT~ a~, ~ !It 

[~,"° 1 =i ~ x ~ f  ~. 

(We use Einstein's summation convention.) Therefore 

( lO8) 

. 0 

[ ~, f ]  = tYU~x~f  =: i y ( d f )  (109) 

with 

[o,] d f =  ~ dx ". (110) 

At this point already we see that the restriction to flat spacetime can be dropped. The 
Dirac operator on curved manifolds, 

iyU(x) ~-2.,+w~ , (111) 
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differs from the fiat one in two respects: the gamma matrices are x dependent, no 

problem in the above commutator, and an additional algebraic term, a spin connection 

w = wudx u valued in so(4)  appears but drops out from the commutator. Since the Dirac 
operator only shows up in commutators Connes'  algorithm works on any Riemannian 
manifold. 

The representation of functions by multiplication on spinors is faithful, of  course, and 

S21f ~ -rrD ( ~ l F ) .  ( 1 12) 

A general element of  the rhs is a finite sum of terms 

¢rO ( f od f j ) ,  fo, f l  E..Y'. ( 1 13) 

It is identified with the differential l -form on M 

fodf j  E J'21M. ( 1 14) 

For 2-forms the situation is less trivial, we must compute the junk ¢rD(d(kercrD)l) .  

Consider 

h-tdh + hdh -1 , ( I  15) 

an element in s ~ l f  where h E 5 v is a non-vanishing function, h - l ( x )  = l / h ( x ) .  As 

J~.T" is not graded commutative this element does not vanish! 

h-ldh + hdh -1 # h- ldh + (dh- l )h  = d ( h - l h )  =dl  =O. (116) 

Its image under 7rD, however, does vanish: 

7"rD( h- ldh + hdh -I ) =7( h-ldh + hdh - l )  

= y ( h - ] d h  + ( d h - ~ ) h )  = 0. (117) 

Therefore the considered element is in ( k e r ~ o )  1 and the corresponding element in 

7"rD(d(kerTrD) t ) is 

7ro(dh-ldh + dhdh - I  ) = y ( d h  - I  ) y ( d h )  + y(dh)y (dh  -j ) 

By linear combination 

r ro (d (ke rTro)  l) = { f l ,  

On the other hand 

f E .T'}. (1 19) 
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~ro(~2.T') = {ftt,'Yt'Y ~, fu~' C U} , (120) 

( . 0 0 )  ~rD(dfldf2+df2dfl)= 2rl ~x~fl-~xvf2 1. (121) 

After passage to the quotient IrD ( d f l )  and ~'D (d f2) anticommute whereas they did not 
anticommute in 7rD (/)2~-) and we may now identify a general element 

~'D(fodfldf2) E ~ 2 ~  (122) 

with the differential 2-form on M 

fodfldf2 E I~M. (123) 

As in Section 1 we have treated the quotient space like a subspace, which is legitimate 
only in presence of an appropriate scalar product. Again this scalar product will be 
defined in terms of the involution and a trace. 

The involution that /~M inherits from ~ via the sketched isomorphism is with our 
conventions 

(fodfldf2...dfp)* = ( -  1)(t/2)P(P-1)fodfidf2...dfp. (124) 

The definition of a trace is delicate because now our Hilbert space S is infinite di- 
mensional. For any bounded, positive operator Q on S we define the Dixmier trace tr<o 

by 

N 

tr , , (al~l -a)  := iim ----LI E a n ,  (125) 
/v--+o~ log N ,:l 

where d = dimM = 4 and the An are the eigenvalues of QI#I -a arranged in a decreasing 
sequence discarding the zero modes of the Dirac operator. Now we proceed as in the 
finite dimensional case (d = 0) and define a scalar product on 7r3 (~.T') by 

(q~o,~o) : = t r o , ( q ~ o ] ~ l - 4 ) ,  ~ o , ~ o  E ~-o(h.T'). (126) 

Note that q~o is bounded because [~, f ]  is. This scalar product can be computed to be 

32-------- ~ tr4 q~ljO d4x (127) 

M 

independently of the four dimensional manifold M. tr4 denotes the trace over the gamma 
matrices. With this scalar product J'2~" is a subspace of 7to (/).T') and by definition 
orthogonal to J = kerTrD + d ker~rD. As subspace O.T" inherits a scalar product (- , . )  
given by 

(qbD,40D) = (qbD,P0400), qbD,400 E X2PY, (128) 

where Po is the orthogonal projector in 7to (/).T') onto the ortho-complement of 7r(J) 
and q~o and 400 are any representatives in their classes. Thanks to well known results for 
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tr4 [yU' vu~.. .yu' ,vu~ ] this scalar product now vanishes for forms with different degree. 
By the above isomorphism between g25 c and /2M the differential forms inherit a scalar 
product still denoted by (., .) 

,I 
(~bD'//tD) = ~ 2  ¢flD *lfiD, ~)D,~-tD C 1 2 P M ,  (129)  

M 

where the Hodge star , .  should not be confused with the involution .* 
As an example let us consider the fiat 4-torus, M = T 4 with all four circumferences 

measuring 2~r and let us compute the eigenvalues of the Dirac operator 

~gt  = 

O 0 "0  
i~xo 0 ax 3 Fx' + t~xZ 

• c) i~ "0  0 
0 t ~x o ax' t ax 2 07  
o o i~_._ • a 

0 7  Ox I Ox 2 -- l ~ 0 
• o o 0 . o  + t o 7  ax3 - t a ~  

~rl 

~ 2  

ltr 3 

lit 4 

=A ~2 . 

(130) 

After a Fourier transform 

lirA =" E CA(jO . . . . .  j 3 )  exp(-ij.x~'), A = 1,2,3 ,4  
j0,-..,j~ EZ 

(131) 

this equation reads 

0 0 i j3 
Jo i j l  - j2 

- i  j3 - i j l  -- j2  - j o  

\ - i j l  + j2 i j3 0 

Its characteristic equation is 

iJj + j2  
- i  j3 

0 

-jo 

) el) C2 

C3 

C 

= A 

CI 

C2 

C3 

C4 

(132) 

[A2_ ( j ~ + f i + j z + j 3 ) . 2  z]2 = 0 (133) 

and for fixed ju each eigenvalue 

,~ = -4- V/Jo e + j2 + j~ + j2 ( 134 ) 

has multiplicity two. Therefore asymptotically for large ]A] there are 4],h.]4B4 eigenvalues 
(counted with their multiplicity) whose absolute values are smaller than IA]. B4 = 7r2/2 
denotes the volume of the unit ball in R 4. Let us arrange the absolute values of the 
eigenvalues in an increasing sequence. Taking due account of their multiplicities we 
have for large n 

IAnl ~ (n/27"r2) 1/4 (135)  

and we can check the Dixmier trace in Eq. (127) for instance with do  = ~o = 1, 

N 

( l , l ) = t r ~ ( l ~ ] - 4 ) =  l im ~ Z ] / ~ n ]  -4 
N--~oc> n=l 
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N 

= l i r a  1 ~-~ 2~2 lim l / 2 ¢ r Z d n  
N---~o¢3 ~ n=l n = N----~oo ~ n 

1 

= 2¢r2 1 / - 327r 2 tr4[ 1 ]d4x. (136) 
M 

Let us come back to the general case. The group of unitaries is now infinite dimen- 
sional 

G = { g E f ' ,  g g * = g * g = l } = { M - - - ~ U ( 1 ) } ,  (137) 

the gauge group U( 1 ). A gauge potential is simply a differential 1-form A with values 
in the Lie algebra u( 1 ), the vector potential of electromagnetism. Its curvature F is the 
u( 1 ) valued 2-form 

F := dA + A 2 = dA (138) 

(the differential algebra S2b r being graded commutative A 2 = 0) and the Higgs potential 
is precisely the Maxwell action 

F) = f F * E  (139) (F, 
o -  
M 

3. The tensor product 

Remember the description of spinning particles in quantum mechanics. Particles with 
spin s come in 2s + 1 dimensional unitary representations of the group SU(2). Position 
in space enters the picture via the tensor product of this finite dimensional Hilbert space 
with the space of square integrable functions. In this spirit we shall now turn the Higgses 
into genuine Higgs fields by tensorizing ,,4 and .T. 

Let us denote this tensor product by 

,At := F ® -A. (140) 

The algebra .At admits a natural K-cycle (T/t, 79t, Xt), the tensor product of the K-cycles 
(S, f/,ys) on U and (7-/,D,X) on -A. The Hilbert space 

7-/t := S ® 7-/ (141) 

carries the representation 

Pt := - @ P, (142) 

the chirality operator is given by 

Xt : :  '~5 @ ,¥- (143) 
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The definition of the generalized Dirac operator 

79, : = ~ ®  ! +Y5 ®79 (144) 

is well motivated from differential geometry. We denote by &t the differential of the 

universal differential envelope f2,At. This is only an auxiliary construction and we 

shall never need 8t expressed in terms of d and &. After passage to the quotient the 
differential, still denoted by &t, will be the concrete operator - i  [79t,'], which we shall 

have to calculate in terms of ~ and 79. To alleviate notations we shall often omit the ,8 

and write e.g. 6t f a  for fit ( f ® a ) .  Again the good differential algebra OAt is obtained 
as a quotient via the homomorphism 

7"rt(foaofi, f la l . . ,  fit fpap) 

:= ( - i ) P  pt( foao) [79,, pt( f lal ) ] ... [79t, Pt( fpat, ) ] • (145) 

Our basic variable Ht is an antihermitian 1-form, 

Ht E S21,At, H t = -Hr .  (146) 

Its curvature is the hermitian 2-form 

Ct := ~t Ht + H2t (147) 

used to calculate the functional 

Vt (H t )  := ( C t , C t )  , (148) 

where the scalar product now involves the Dixmier trace in S and the trace in 7-(. The 

main miracle of Connes' recipe can be summarized in the following 

Theorem 1. We have the following decomposition: 

H t = A + H ,  

A C/21 ( M , p ( g ) )  ~ /21.T" ® .00.,4, 

H* = - H  E /-2°(M, J2]A) ~ s2°FQ ~ A ,  (149) 

and 

Ct = F + C - D@T5 , 

with 0 the Lie algebra of the group of unitaries, 

:= { x  c ,A, x*  = - x } ,  

with the field strength 

F : = d A + A 2 = d A + ½ [ A , A ]  E .O2(M, p ( g ) ) ,  

(150) 

(151) 

(152) 
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and the covariant derivative 

D ~  :=dqb + [ A ¢ -  CA] E S21(M, f f lA) .  

Recall qb := H - iD. Finally the generalized Higgs potential reads 

g ( A  + H) = f t r ( F ,  F) 

M 

with 
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+ f tr(D¢* * D¢) + f ,V(H)- f ,Vo(H) 
M M M 

I~ (H)  := tr [ (otC)*aC]  , 

and a is the linear map 

a "  ,(22.,4 ) p ( A )  + 7r(6(ker'rr) l ) 

(153) 

(154) 

(155) 

(156) 

We have two basic variables. A is a genuine gauge potential (non-abelian if ,A is 
non-commutative), that is, a differential 1-form on M with values in the Lie algebra 

g of the group of unitaries of ,,4 represented on 7-/. H is as before, however, now 
with a differentiable x dependence, i.e., H is a multiplet of genuine scalar fields. The 

generalized Higgs potential reproduces the complete bosonic action of a Yang-Mills- 
Higgs model, namely the Yang-Mills action, the covariant Klein-Gordon action and 
the integral of the modified Higgs potential V - V0. The modified potential is still a 

non-negative polynomial of fourth order in the scalar fields, in fact, as we shall see, 

V - V0 = tr [(C - aC)* (C - a C ) ] .  (159) 

The entire action is gauge invariant. An element g of the group of unitaries of At is 
a differentiable function from spacetime into the finite dimensional group G = {g E 
.At, gg* = g*g = 1 }. Therefore these elements are genuine gauge transformations. Under 
the gauge group our fields transform as 

A g = p ( g ) A p ( g  -1 ) + p ( g ) d p ( g - l ) ,  (160) 

H g = p ( g ) H p ( g  - j )  + p (g)Sp(g-1) .  (161) 

Before proving the theorem let us compute the modified Higgs potential V0 for our 
example ,,4 = M2(C) ® C. Recall the generic elements 

determined by the two equations 

tr [R*(C - aC)] = 0  for all R E p(.A), (157) 

tr[K*aC] = 0  for all K E 7"r(6(kerTr)l). (158) 

The scalar product is the finite dimensional one of Section I, the x dependence of  C 
can be ignored. 
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.:(o 

Therefore 

227 

a E M2(C),  b C C, (162) 

k C M2(C),  (163) 

o )  
M * c M  ' c E M 2 ( C ) .  ( 1 6 4 )  

(i0 0) 
a C  = 0 0 , (165) 

0 [m[2Cll 

)2  , (166) Vo=tr [ (aC)  2] = Iml4(cll = [m[4(1 - ~'~bl)2 

and the modified Higgs potential vanishes; through the process of tensorizing we have 

lost the precious property of spontaneous symmetry breaking. However, this loss of 
symmetry breaking is particular to our example and not a typical feature. In fact a slight 
modification of the example, namely adding more families, remedies the evil. Consider 
the same algebra ,,4 = M2(C) @ C with a new Hilbert space consisting of N copies of 
the old one, 

7-[ := (C 2 ® C) ® C N. (167) 

E.g. for two families, N = 2, the representation is by the 6 × 6 matrices 

p ( a ,  b)  := 
i 0 0 0 a 0 0 

0 b 0 
0 0 b 

if written with respect to the suggestive basis 

(168) 

(eL,  VeL , tZL, Z' ~,L, eR, tZR ). (169) 

The mass matrix 

involves now a non-degenerate, complex N x N matrix m, which should be thought of 
as mass matrix of the charged leptons. In other words, the basis is ordered differently 

here: 

(eL , tZL ,PeL ,  P u L , . . . ) ,  N = 2 .  (171) 

The formulas of Section 1 generalize naturally to the new situation, 

( ) , ,  ram* 0 = I ® A + o'3 N A ,  A := g m m  . 
M M *  = 0 0 

The generic elements R C p(~4), K E ~'(6(ker~') 1 ) and C E .02.4 become 

(172) 
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O) 
0 b ® l  ' a E M 2 ( C ) ,  b E C ,  (173) 

K = (  kQAO ~ ) '  k E M 2 ( C ) ,  (174) 

(0 0 ) 
C= 0 M * ( c ® I ) M  " (175) 

A straightforward calculation yields 

0 ) 
aC = N -I tr(m*m)cll ® 1 

and the (modified) Higgs potential 

E l ] V - V o =  tr(m*m) 2 ~ ( t r m * m )  2 ( 1 - ~ b ~ b l )  2 (177) 

does break the symmetry spontaneously if m*m has distinct eigenvalues. 

Proof of the theorem. Our conventions are summarized in Table 1. In the following we 
compute only 121At and 122.At for the particular case at hand. Details of the general 

case can be found in Ref. [2]. To get started, we need the commutator [Dt,fp(a)].  
Using 

we obtain 

[Dt,fp(a)] = iy (d f )p(a)  + Ys f  [D, p (a ) ]  , (179) 

7rt ( foao t~t f l  al ) = "n'o ( f0df l  ) p(aoal ) + fo f l  ys"n'(a06al ). (180) 

Therefore 121,At decomposes into a direct sum 

121.A t = 121 ~L" ® p( .A)  ~) .)L" ® 121.A ( 181 ) 

and its general element can be put under the form 

Ht = A + H, (182) 

where 

A =7"rt(foaStfll)  E 121.~®p(.A) (183) 

is a 1-form on spacetime with values in p(.A) and 

H = ~ t ( f a o 6 t l a l )  E ,F® ~I.A (184) 

is an internal 1-form as in Section 1 but now with a differential x dependence. Later we 
shall impose that Ht be antihermitian, in particular that A take values in the Lie algebra 
g, 

~ : = { X E  A, X* = - X }  (185) 
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Table 1 
Conventions 

algebra 

Hilbert space 

chirality 

representation 

"Dirac" operator 

universal differential 
envelope 

its scalar product 

orthogonal projector 

homomorphism 

the  differential 
algebra 

its scalar product 

Higgses, 
gauge potential 

curvature 

Higgs potential, 
action 

,A g a  

X 

P (a )=  (PLo a) pR(o)O ) 

o) 
hA, a 

( . , - ) = t r l  * . l  

P 

rr( aoSal 

DA,  8 

(., . ) = ( . , P . )  

HC121.4, H * = - H  

C = 5H q- H 2 C 122.,4 

V(H) = (C,C) 

.T'?9 f :  M ----~ C At = .T'Q.A :3 J]:t 

8 = L2(M,C 4) E) qs 7-~ t = 8 Q 7 ~  

)'5 Xt = Y5 ® X 

f p t ( fa )  = f p ( a )  

,4 
~I.T, d ILAt, 8t 

( . , . ) = t r , o l - *  -1~1-41 ( . , . ) = t r , o t r [ - *  - ] J l -41  

PD P, 

7ro(fodfl ) 7rt(foao 8t f la l  ) 

$2.T" ~- IIM, d 12At, 5, 

( . , . ) = < . , e o . )  (., .):<.,e,.) 

A G -(21-7- -, A* = - A  Ht C 121.At, H~ = - H i  

F = dA + A 2 E ~22.T" Ct = 6t Ht + H 2 E 122.At 

SMaxwdl(A) = (F, F) V, = (Ct, Ct) 

represented on 7-/, and H is antihermitian. 
On level two we have 

rrt ( foao 8, f l  a l 8t f2a2) = fro ( fodf~df2)  p (aoala2) + fo f l  f27r(aoSa16a2) 

+ i y ( f o f t d f 2 ) y s p ( a o )  [79, p(a t ) ]  p(a2) 

- i y ( f o d f t  f2)ysp(aoal)  [79, p(a2)] • (186) 

Consequently 

7"/',(~2,At) = ["~'D (~22~ -) (~ p ( , A )  n t- .~"@ 7T($'~22.A)] 

77. 0 (j,~l ~-) @ 7 . / . (~1Z) .  ( 1 8 7 )  

Remember from the last section that spacetime zero- and two-forms mix before division 
by the junk. This entails that the sum in the above bracket is not direct. Next we compute 
the tensor junk. Consider a general element of  O l,At, 

r r t ( f o a  ~t f l  1 ) + rrt(fao 8t l a l  ) . ( 1 8 8 )  

Its pre-image p belongs to (kercrt) 1 if and only if rrD(fodf l )  = 0 and rr(aoSal) = O, 
in which case 
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7rt( ~tp ) = 7to ( d f o d f l ) p ( a )  + fTr( 6ao6a! ). (189) 

It follows that 

~ t (  8, (ker 7rt) 1 ) ----. 77. D (d (ker  7to ) l ) ® p(.A) + Y" Q 7r(8(ker q'r) 1 ) , (190) 

where again the sum is not direct and by division we get 

j,~2At = [~2~- @ p(,A) -[- . ~ ®  ~2,A] ~ f21.~" ® $"21.A. (191) 

Our next task is to compute the total curvature Ct = 6t Ht + H2t with Ht = A + H and 

a = 7"rt(foa ~t f l l  ) = 7to ( f o d f l ) p ( a ) ,  (192) 

H = 7"rt(fao ~t lal  ) = fyszr (ao6al  ). (193) 

We have 

6t a = zrt ( ~t foa  ~t fJ 1 ) = zro ( d f o d f l )  p ( a )  - 7ro ( f o d f l  ) yscr(~a)  

=: dA - ~ATs, (194) 

6t H = 7"r t ( 8t f ao ~t l a l )  = f zr( Sao~al ) + "tr D ( d f ) yszr( ao~al ) 

=: 6H + d/-]ry 5, (195) 

( a  -k- H)  2 = "n 'D( ( fod f l )2 )p (a2 )  q'- f2"r r ( (ao6al )z)  

+7"r o ( f od f l f )  y57r(aao6al ) - 17"o ( f f od f l ) ys"rr (aoSal a)  

= : a 2 + / ~ 2  + [A/4 - / - ) a ]  Ys. (196) 

All together 

Ct = d a  - ~Ay5 + 8~t + d/4y5 + a 2 +/ . )2 + [a/7t _ HA]y5  

= F  + C  + ( i [ D , a ]  + d # +  [ a / Z / - / ~ a ] )  75 

= F + C - Dq~y5 (197) 

with the curvatures 

F := dA + A 2, C := 6f-I +/.~2. (198) 

The covariant derivative 

D ~  := dq0 + [ A , ~ - 4 ~ A ]  E O (M, O tA)  (199) 

makes sense because of the homogeneous transformation law of • := /~  - iD. Note the 
purely algebraic term 8A = - i [ D , A ]  in the total curvature. This term generates the 
masses of  the gauge bosons in the Lagrangian and does so by means of  the fermionic 
mass matrix M in D. 

Finally we have to work out the scalar product in s22.At, the space where the curvatures 
live. As usual we start with the auxiliary scalar product (., .) in q'rt(~.At) defined by 
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^ .  ^ 
(~o ® ,~, ¢)o ® ¢~) := tr,o(4,DCJo I~1-4) tr(~*~), 

c (200) 

and define the scalar product on OAr by 

(&t, ¢st ) := (fbt, Ptg'r}, (201) 

~bt and ~9t are any representatives of their classes and Pt is the orthogonal projector on 
(Trt( ~t (kerTrt)) ±. For our purpose it is sufficient to know this projector in 7"rt(~2,At) 
where it is already non trivial, Pt 4: Po ® P. Let us come back to the decomposition 

7"l"t(f-22At) = ['B'D (f22F) ® p (A)  + F ®  7r(/12.A)] 

~]~ "/'/'D ( ,(~1,~ ") ® "B'( ,[~1 ~1.) (202) 

with general elements in the three subspaces 

~r (foao ~t f l  i ¢3, f21 ) = ~D ( fod f l  d f2) p(ao),  (203) 

rrt ( f oao 6t 1 a l 6t 1 a2 ) = f oT"r( ao~al 8a2 ), (204) 

7"rt( f oao 6t l al ~t f21) = -'n'o ( f od f 2 ) y57"r( ao6al ). (205) 

Our first conclusion is that the above direct sum is also an orthogonal sum because the 
trace in Eq. (127) is over Y5 multiplied by an odd number of proper gamma matrices 
and vanishes. Therefore by Eq. (190) Pt leaves the third subspace untouched and we 
concentrate on the restriction P~ of Pt to the first two subspaces. Let us introduce the 

following short hands: 

U := 7"/'O ( f22,~ ") ® p( .A),  (206) 

U0 := 7"rD (d(kerT"rD) 1 ) ® p( ,Z)  ~ ~ @ p ( A )  (207) 

and U± is the ortho-complement of Uo in U, 

U± := (Uo) ±U ~ 122M ® p( .A) .  (208) 

Likewise 

W := ~ @ 7"/'( f22,A), (209) 

W0 :=5 t- ® 7r(6(ker ~r) l ) (210) 

and W± is the ortho-complement of W0 in W, 

W j_ := (W±) ±w = .~"® ~2¢4 (21l)  

and P1 is the orthogonal projector in U + W on (U0 + Wo) ± 4:U0 ± + W0 ±. Next we 
remark that U± is orthogonal to the other three subspaces, 

U± n (Uo + (Wo @ W±)) = 0, (212) 

U± 3_ (Uo + (Wo® W±)) (213) 
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because tr4[yuy ~] = tr4[y~y~']. This means that also V± decouples and it remains to 
compute the restriction P2 of Pt to 

U0 + (W0 • W±) = St-® [p(-4) + (Tr(tS(ker~-) 1) ® 02 .4) ] .  (214) 

In this space now the x dependence is trivial and can be ignored reducing the calculation 

to a finite dimensional one in [p(.4) + (Tr(6(kerTr) 1 ) ® 02.4)] with scalar product 

defined by tr, the trace over 7-/. What we need is P2C, C C /22,,4. Since /'2 is an 

orthogonal projector onto (Uo + Wo) ±, C - P2C is perpendicular to (U0 + W0) ±, 

C - P2C =: ceC C (U0 + W0) ±± = U0 + W0 (215) 

o r  

P2C = C - aC. 

Finally by Pythagoras 

(C, PtC) = (C, P2C) = (C, C - a C )  = ( C, C)  - (C, aC)  

= (C, C )  - (P2C -t- otC, olC) 

= ( c , c )  - ( , ~ c , , ~ c ) .  

(216) 

(217) 

4. Remarks  

Instead of conclusions we offer a list of remarks. 

The standard model 

The first question is of course: can the standard model be accommodated in Connes' 

approach? The answer is yes, but this requires three new items to be added [ 1,3,4] to 
Connes' model building kit as reviewed so far. In our example the group of unitaries, 

U(2) × U(1) ,  is too big by one U(1) factor to describe electroweak interactions and 
there are two complex Higgs doublets, one too many. Both points are cured readily 
by replacing the internal algebra by -4 = ]HI G C, H being the quaternions, keeping the 
K-cycle unchanged. Straightening out the hypercharges requires a first new item, the 
so called unimodularity condition, which reduces the group of unitaries by a purely 
algebraic restriction. But then one has to start from a bigger algebra, which is anyhow 
needed to include strong interactions. Since quantum chromodynamics is a vector like 
theory its inclusion is easy except for two points. First its group, SU(3), is the group of 
unitaries of  no algebra -4. This problem is taken care of by the unimodularity condition. 
Second the quarks come in a representation, that is a tensor product, (3, 2), and therefore 
not available so far, a problem solved by introducing bimodules, the second item. As 
explained in our example the Higgs and gauge boson masses are determined by the 
fermion mass matrix. Also it is obvious that the coupling constants in the bosonic 
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action Vt are related. In the complete standard model h la Connes these relations are 

1 i V / - ~ / 7  mr, with all fermion masses neglected against the top [4,5] mw = ~ mr, mn  = 

mass, and g3 = g2, sin 20w = 3/8. Of course these classical relations are unstable under 

quantum corrections [6] and there are at least two possible attitudes with respect to this 
dilemma. The first says we do not know yet what quantum field theory is in this new 
context. The other attitude is the third item: The trace in the Hilbert space 7-[ that we 
have used to define the scalar product is not unique (up to normalisation) and taking 
the most general traces produces the standard model without the constraints on masses 
and coupling constants. 

Other generalisations 

We have only considered a particular case of Connes' algorithm. In general the total 

algebra ,At is not a tensor product of Or- and a finite dimensional algebra .A. Also the 

basic variable n t  can live in a more general space than S21.At, it can be a connection 

on any hermitian finite projective module over .At. These generalisations do not seem to 
help with the above mentioned problems. 

Other algebras 

Up to now only few algebras .,4 have been explored besides the standard model. It 
is most intriguing that the simplest typical example we know so far is already quite 

involved and reproduces most features of electroweak interactions. The other algebras 

considered in this context are Ms(C)  [7] and Cliff(10) [8] in order to reproduce the 
SU(5) and SO(10)  grand unified theories. The first one fails because the fermions in 

the SU(5) model sit in a 5 + 10, the 10 comes from a tensor product and does not fit 

Connes' rules. The second model is left-right symmetric and it is difficult to obtain the 

complicated Higgs sector necessary in SO(10) .  Finally a smaller left-right symmetric 
model with gauge group U(2) × U(2) has been worked out [9]. As in the SO(IO)  

model, the gauge symmetry is broken spontaneously and parity remains unbroken. 

Splinters 

It does not look easy to get rid of imaginary time. In non compact, pseudo Riemannian 
spacetime traces and scalar products are ill defined. The Dirac operator has continuous 
spectrum, action integrals diverge and there is certainly more to do than simply invoking 
Wick rotation. There is no convincing motivation for the time integral in $ = L2(M, ca ) .  

Other non commutative schemes 

Connes' algorithm to produce a differential algebra/2..4 starting from an algebra ,A-- 
such that the algebra .Y" of functions on a manifold M reproduces de Rham's differential 
algebra s2M--is not unique. In fact already in 1988 Dubois-Violette [ 10] introduced a 
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different such algorithm using derivations. This algorithm is successfully used by the 
southern Paris group to obtain particle models [ 11 ]. These models share the attractive 
features of Connes' theory, they also unify gauge and Higgs bosons. In their scheme 
however the Higgs bosons transforms according to the adjoint representation of the group 
of unitaries irrespective of fermion representations. Their scheme has been generalized 
by Balakrishna, Giirsey and Wali [ 12] to include other Higgs representations. Another 
approach due to Coquereaux [ 13] takes immediately the differential algebra f~ .a  t as  

starting point. The approach is thereby more transparent and less rigid. Many of its 
physical features have been worked out by the Marseille-Mainz group [ 14]. 

Non-commutative algebras and quantum physics 

The non-commutative models are clearly inspired by the mathematics of quantum me- 
chanics, operator algebras. There are two main differences between non commutative and 
quantum. Ad one, the passage from classical to quantum mechanics can be considered 
as replacing the commutative algebra of functions on phase space, the "observables", 
by a non-commutative algebra [15]. In the above models not phase space but space 
time is rendered non-commutative. Ad two, in quantum mechanics the non-commutative 
algebra is God given and contains a dimensionful parameter, Planck's constant. A nice 
example illustrating the interplay of quantum mechanics and non-commutative geometry 
is given by Madore [ 16]. We repeat that a generalisation of quantum field theory to the 
non-commutative setting is still lacking. 

Parallel universes 

The first example studied by Connes and Lott [ 1 ] was ,,4 = C + C, ~ = C + C. It 
has a nice geometric interpretation in terms of a Riemannian manifold M = ML + MR, 
disjoint union of two identical Riemannian manifolds ML and MR separated by the 
constant distance (Imp[ 2 + Im21e) -1/2. The left handed fermions live on ML, the right 
handed fermions on MR. This model can also be interpreted as a Kaluza-Klein theory 
with a discrete fifth dimension consisting of two points. The Kaluza-Klein analogy is 
present in all non-commutative models. It has been worked out in detail by the southern 
Paris group [ 17] and served as initial motivation for Coquereaux's scheme [ 13]. 

Gravity 

A question of fundamental importance is: can the Einstein-Hilbert action be fit into the 
non commutative frame? Again the answer is not unique. A first proposal is due to the 
Ztirich group [ 18]. Starting from Einstein-Cartan's theory they arrive at a tensor scalar 
theory. The scalar has a geometric interpretation as the now variable distance between 
parallel universes. In a recent paper Chamseddine and Fr6hlich [ 19] have coupled this 
scalar to the standard model and after addition of some effective Coleman-Weinberg 
potential they obtain a striking prediction for the top and Higgs masses, 
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146.2 < mt <_ 147.4 G e V ,  117.3 < rnH < 142.6 GeV.  (218)  

Connes  [20]  has found a more  intrinsic way to incorporate  gravity:  he computes  the 

D ixmie r  trace or  more  proper ly  the Wodiz icki  res idue o f  the ( t rue)  Dirac operator  to 

the power  minus  two and obtains  the E ins te in -Hi lbe r t  action. 

Uni f ica t ion  

Grand unif icat ion was based on the attractive idea to replace a direct product  o f  groups 

by a s imple  group.  In the same spirit  and in order  to reconci le  part icle interact ions and 

gravity it seems attractive to look  for an algebra .At, that is not  jus t  a tensor product  

o f  the a lgebra  5 c o f  funct ions  on spacet ime and an internal algebra, but that is still 

sufficiently c lose  to .7" to a l low spacet ime to subsist in some form. A 2-dimensional  

example  o f  such an algebra is the non-commuta t ive  torus which plays an in t r iguing role  

in sol id state physics.  
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